
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010 1499

Pyramid Architecture for 3840 X 2160 Quad Full
High Definition 30 Frames/s Video Acquisition

Wei-Min Chao and Liang-Gee Chen, Fellow, IEEE

Abstract—Image pipeline processing is crucial to generating
high quality images in applications using complementary metal-
oxide-semiconductor (CMOS)/charge-coupled device sensors. The
on-chip line buffer normally dominates the total area and power
dissipation due to the needed filter window buffering. As image
resolution and filter support increase, the area and power
requirement increase accordingly. This paper presents a novel
pyramid architecture to efficiently process a system that the im-
age pipeline is between an image sensor and video coding engine.
By utilizing the features of the pyramid structure and block-based
video/image encoders, the proposed architecture is scalable from
low to high image resolution and filter size. The input image is
first partitioned into floors of tiles to reduce the frame line buffer.
Two computing schemes, immediate result reuse and vertical
snack scan, are utilized to reduce the overlapping redundant
computations. A 90 nm CMOS chip design with 7 × 5 filter
support for 3840 × 2160 quad full high definition video at 30
frames/s is designed to demonstrate the performance of power
and area efficiency. Compared with traditional architectures with
frame line buffers, the proposed design has shown that the power
consumption is reduced by 25% to 108 mW from 145 mW. The
chip area is reduced by 65% to 309 K from 888 K logic gates.
The external memory bandwidth increases to 8286 Mbit/s from
5972 Mbit/s for YUV4:2:0, from 7963 Mbit/s for YUV4:2:2, and
is reduced by 30% from 11 944 Mbit/s for YUV4:4:4.

Index Terms—Camcorder, digital image processing pipeline,
digital still camera, high definition video, VLSI architecture.

I. Introduction

THE demands of image and video acquisition are in-
creasing in technologies such as digital still cameras,

digital camcorders, and security internet protocol (IP) cameras.
Furthermore, advances in the integration of image and video-
acquisition devices with consumer and information technol-
ogy products, such as mobile phones, notebook computers,
monitors, and interactive game players, have facilitated the
development of new applications.

For these applications, the image pipeline processes incom-
ing pixels from a sensor and then feeds pixels to a video or
image encoder for storage or network transmission. It is the
core technology that restores vivid videos for the subsequent
video compression codec and intelligent video processing

Manuscript received October 29, 2009; revised March 12, 2010; accepted
April 15, 2010. Date of publication September 20, 2010; date of current
version November 5, 2010.

The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei 10617, Taiwan (e-mail: hydra@video.ee.ntu.edu.tw;
lgchen@video.ee.ntu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2010.2077770

[1]–[3]. The main aim of the image pipeline is sensor noise
reduction (NR), color interpolation (CI), gamma correction,
color conversion, and edge enhancement (EE) [4]–[8]. Al-
though no universal algorithm exists, several image processing
algorithms are linked together to achieve these specific goals.
The technological trend for the image-processing pipeline
is that resolution has increased to more than 10 Mpixels.
Although the shot-to-shot performance is being shortened for
capturing digital still images, the frame rate of the full view
increases more than 30 frames/s to achieve a quick response
of two-way video interactions. Image and video devices must
be sufficiently compact such that they can be integrated into
existing appliances. Low power dissipation is a requirement for
portable and mobile devices. Image quality has been improved
continuously via complex algorithms. Linear filters are now
replaced with nonlinear filters that adapt to image contents.
Filter window size increases to enhance image quality. Pixel
depth has increased to more than 8 bits to achieve a high
dynamic range and wide gamut.

Unfortunately, heterogeneous algorithms are linked and the
inconsistent data flow of these algorithms makes efficient
implementation difficult. Different architectures have been
proposed to solve these issues. For an embedded system,
single instruction multiple data and very long instruction word
digital signal processor architectures [9]–[12] were developed
to carry out the image processing pipeline. A raw image is
normally retrieved and stored in external memory, and then
one processor or multiple processors read these raw images for
subsequent algorithmic processing. The computing load and
bandwidth to and from off-chip memory become bottlenecks.
With a single core, a long shot-to-shot time is required and
is not suitable for high-frame-rate video acquisition. Over
time, advanced silicon technology drives integration of more
processor cores [11] to carry out full high definition resolution
at 30 frame/s. Although these architectures are flexible, the
chip area is huge and power efficiency is poor compared to
those of hardwired solutions.

The dedicated hardware engines with the frame line buffer-
based architecture [13]–[16] are widely adopted to achieve
real-time performance and acceptable quality. Fig. 1 shows a
typical design for two links of the 3 × 3 2-D filter algorithms.
Several two-port static random access memories (SRAMs)
are used as line buffers to store incoming scan-line pixels.
A window of pixels is then transferred concurrently to the
register array of the filter core. However, when resolution
increases and advanced algorithms need a large filter window,

1051-8215/$26.00 c© 2010 IEEE

1500 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

Fig. 1. Frame line buffer-based filter architecture.

dozens of line buffers are necessary and the storage amount
dominates the total chip area and power consumption. A
multiple pixel processor architecture [17] was developed for
the image-processing pipeline. Although multiple processing
cores can have massive computing capability, power and area
scalability are problems, such that only 256 × 256 pixels
of resolution is supported. A reconfigurable architecture [18]
was proposed for the image-processing pipeline. Based on a
detailed analysis of the characteristics of algorithms, special
types of elementary computing units have been implemented
and coarsely integrated into the processor architecture. Thus,
computing efficiency can be improved considerably. However,
the problems of a huge memory bandwidth and many frame
line buffers are still not resolved, especially for high-resolution
images and large filter kernel size.

This paper proposed an efficient architecture for a cap-
turing system including image sensor, image pipeline, and
video/image encoder, such as Joint Photographic Experts
Group (JPEG) [19] and H.264 [20]. By analyzing the data flow
and structure of these units, the proposed pyramid architecture
of image pipeline is a scalable design without large on-chip
buffer and power dissipation while the image resolution and
filter size increases. A design example for 3840 × 2160 quad
full high definition (QFHD) at 30 frames/s videos is de-
signed in United Microelectronics Corporation (UMC) 90 nm
complementary metal-oxide-semiconductor (CMOS) standard
performance and regular voltage threshold (SP-RVT) tech-
nology. Compared to a typical architecture, simulation re-
sults show that power consumption is reduced to 108 mW
from 145 mW. The equivalent area is reduced to 309 K
from 888 K logic gates. The external memory bandwidth
increases to 8286 Mbit/s from 5972 Mbit/s for YUV4:2:0,
from 7963 Mbit/s for YUV4:2:2, and reduced by 30% from
11 944 Mbit/s for YUV4:4:4.

The rest of this paper is organized as follows. Section II
presents the fundamental algorithms of the image pipeline.
Section III describes the proposed architecture of the pyramid
image signal processor. Next, Section IV summarizes imple-
mentation results and comparisons. Finally, a conclusion is
drawn in Section V.

II. Fundamental Algorithms

Fig. 2 is a typical image pipeline [8] for video acquisition
from a CMOS image sensor. Heterogeneous algorithms are
linked together to achieve transformation and enhance visual
quality from the Bayer raw color space to the YUV color
space. These processes are classified into two categories

Fig. 2. Image pipeline for video acquisition.

TABLE I

Image Pipeline Algorithms

Filter No. Processing Unit Operation Type
f1 Black level adjustment Per-pixel
f2 Lens shading compensation Per-pixel
f3 NR Per-block
f4 White balance Per-pixel
f5 Gamma correction Per-pixel
f6 CI Per-block
f7 Color conversion Per-pixel
f8 EE Per-block

according to the basic processing unit. One process is the
per-pixel operation and the other is the per-block operation
(Table I). The image pipeline can be formalized as (1c). For
one pixel output yi, the operand of the per-pixel function
is the co-located pixel, xi, and the operands of the per-
block function are the window � of pixels around the co-
located center pixel xi. The data flow of per-pixel functions is
consistent and efficient for a pipelined hardware architecture.
However, applying this intuitive implementation method for
the links of per-block functions is difficult. These combined
2-D adaptive filter operations are NR, CI, and EE (gray in
Fig. 2). Because no international standard is defined for image
pipeline algorithms, there may be simple algorithms which
degrade image quality. Hence, we present modified NR, CI,
and EE algorithms in our implementation. In Section III, we
then present our architecture to carry out these 2-D nonlinear
filters to achieve good visual quality

Y = f8(f7(f6(f5(f4(f3(f2(f1(X)))))))) (1a)

yi = fk(xi, �i), where k is 3, 6, and 8 (1b)

yi = fk(xi), where k is 1, 2, 4, 5, and 7. (1c)

A. NR Filter

While photons are captured and converted into digital
signals by the image sensor, shot noise, thermal noise, readout
noise, reset noise, and fixed pattern noise are combined with
the signals [21]. These noises are typically considered a
mathematical mixture of Gaussian noise and impulse noise
[22]. Nonlinear approaches have proven very attractive for
accurate filtering of image data, because nonlinear algorithms
can distinguish between unwanted noise and image signals
based on the image characteristics. Here, a bilateral filter [23]
and [24] combined with a median filter is implemented in

CHAO AND CHEN: PYRAMID ARCHITECTURE FOR 3840 X 2160 QUAD FULL HIGH DEFINITION 30 FRAMES/S VIDEO ACQUISITION 1501

Fig. 3. Soft switch of the median filter and bilateral filter.

the Bayer domain to efficiently remove Gaussian noise and
impulse noise. Fig. 3 shows the data flow. Let xj be the pixel
intensity at position j, � be the position set of the same color
components within filter window i, yi be the filtered result
at position i, and σs and σr are scaling factors. The bilateral
filter is shown in (3). This filter simultaneously weights pixels
based on distance from the center pixel and distance from pixel
intensity. The effect is reduced Gaussian noise by smoothening
images while preserving edges based on both their geometric
closeness and photometric similarity. Although an ordinary
median filter can remove the impulse noise efficiently, it also
distorts an image and lose fine details. To avoid altering a
significant amount of the original information in an image, a
switch mechanism is used to select the median filter or bilateral
filter for incoming pixels instead of using the cascade of the
bilateral and median filter. If the intensity of the center pixel is
larger or smaller than the average intensity of surrounding pix-
els over a specific threshold, the median pixel intensity of the
window is selected. Otherwise, the bilateral result is chosen

yi = medianj⊂�i
(xj) (2)

yi =

∑
j⊂�i

e
− |j−i|

2σ2
s e

− |xj−xi |
2σ2

r xj

∑
j⊂�i

e
− |j−i|

2σ2
s e

− |xj−xi |
2σ2

r

. (3)

B. CI Filter

To produce a color image, a pixel must have at least three
color components. Due to cost-effective considerations, most
image sensors are monochromatic and have a Bayer pattern
of color filter array [25] for capturing alternative three red-
green-blue (RGB) primary colors. Based on this mosaic-like
gray-scale image, the two missing color components have to be
reconstructed from adjacent pixels using algorithms so called
CI. Many CI algorithms have been developed [26]–[28]. Most
adapt the spatial characteristics of a local area. They detect
edges according to image gradients. Missing color components
are then assigned by weighted averages of neighboring pixels
with the similar image characteristics. This paper adopted [28]
owing to the detection of comprehensive directions (N, S, E,
W, NW, SW, NE, and SE). Although computational complexity
is high, this algorithm achieves better mean square error than
gradient solutions.

C. EE Filter

In addition to optical blur and sensor blur, the aforemen-
tioned NR and CI algorithms, altering pixels by weighted
average of pixels in a filter window, may blur an image,
resulting in image degradation. Therefore, the EE filter is

applied to increase the sharpness during the last processing.
The EE filter has two stages, as shown in (4a). First, edge
intensities are obtained using a high-pass filter. High-pass
filtering subtracts an unsharp mask from an image [29]. An
unsharp mask is a blurred image produced by spatially filtering
an original image with a Gaussian low-pass filter, kj . Second,
EE identifies edge boundaries according to the predefined
threshold, and then enhances the contrast in the identified area
immediately around the edges by creating subtle bright and
dark highlights

zi = xi −
∑

j⊂�i

kjxj (4a)

yi =

{
xi + αzi if zi > threshold
xi otherwise.

(4b)

III. Pyramid Architecture Design of Image

Pipeline for Video Encoding

A. Data Flow Analysis

Fig. 4(a) shows a data flow of a general subsystem in
digital still camera, digital camcorder, and security IP camera
applications. A buffer is needed to reorder line scan pixels
to block scan ones. The size of this buffer is generally two
macroblock rows of pixels (W × 16 × 2 × 1.5 bytes) for
double buffering, and an external dynamic random access
memory (DRAM) is usually adopted for cost-efficiency. Most
CMOS/charge-coupled device (CCD) sensors adopted Bayer
RGB format and a color component is used to represent a
pixel. Besides, to represent visual linear intensity, a gamma of
0.45 is usually adopted in the image pipeline to encode linear
RGB values into nonlinear ones. It means to generate three
8-bit color components for a video encoder, it is necessary
to acquire a 10-bit component in Bayer RGB color space.
According to JPEG [19] and H.264 [20] image and video
coding standards, U and V component can be sub-sampled
to 4:2:0 for acceptable chrominance representation or up to
4:4:4 for high quality. Because data amount becomes larger
from 10 bits to 12 bits or 24 bits/pixel in average after the
image pipeline, it is beneficial for line buffer optimization if
we moved the reorder buffer before the image pipeline. Hence,
we proposed an efficient architecture for the image processing
pipeline for Fig. 4(b). In addition, since a raster-to-block
conversation is a must, the requirements for inefficient block-
style access to the external memory are similar in Fig. 4(a)
and (b). In Section IV-B, we compare the bandwidth impacts
according to this data flow proposal.

B. Image Decomposition into Tiles in a Pyramid Structure

Fig. 5 shows the data partition and flows of 2-D images in
the pyramid architecture. The first floor is the source image,
which is divided into tiles. Four kinds of tile sizes are defined
in Table II for the same floor. Each tile is processed by the
raster scan order of the same floor. Pixels inside one tile in
the lowest floor are received by the tile processing element
(TPE), which outputs filtered results concurrently to the top
floor. Each TPE applies one 2-D filter (f3, f6, or f8) to pixels

1502 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

Fig. 4. Data flow in target applications. (a) Data flow of a general subsystem.
(b) Data flow after block-scan reorder. (c) Access types of (a) and (b) flows.

TABLE II

Tile Size in Various Regions and Floors

Floor 1 Floor 2 Floor 3 Floor 4
Region 1 (s + 3m)× (s + 2m)× (s + m)× st

(t + 3n) (t + 2n) (t + n)
Region 2 s(t + 3n) s(t + 2n) s(t + n) st

Region 3 (s + 3m)t (s + 2m)t (s + m)t st

Region 4 st st st st

within one tile. In addition to TPEs, several pixel processing
elements (PPEs) exist, each handling one per pixel operation
(f1, f2, f4, f5, and f7). The general filter design replaces each
pixel value in an image with the filter result of its neighbors
and itself. The lower tiles have to be larger than the upper
ones. If the expected size of the upmost tile is s by t and the
filter kernel size is (m + 1) × (n + 1), the co-located tile size
in the lowest floor will be (s + 3m) × (t + 3n). By considering
overlapping areas, images are partitioned into four regions in
the lowest floor (source image). On the lowest floor, the left-
topmost tile is (s + 3m) × (t + 3n) pixels. Except for the top-
leftmost tile, all topmost tiles are s × (t + 3n) pixels and the
leftmost tiles are (s + 3m) × t pixels. The other tiles are s × t

pixel size. With these tile partitions, the frame line buffer can
be reduced and is independent of image width. This makes
the image pipeline scalable for different image resolutions.

C. Immediate Result Reuse

Although tile partitioning can reduce the size of line buffers,
the overlapping areas of 2-D filter operations across tiles
results in poor hardware utilization. For example of the four

Fig. 5. Data partition and flow of the pyramid architecture.

floors of the pyramid architecture with a 7 × 5 filter kernel
size (Fig. 6), the 16×16 output pixels need 34 ×28 pixels on
the first floor. This makes hardware utilization inefficient and
3.72 times input image bandwidth is required.

The proposed immediate result reuse (IRR) data flow is
based on the reuse of filter results among floors in the
horizontal and vertical directions (Fig. 7). To simplify the
representation, Fig. 8 shows a 1-D example that the kernel
size is 3 pixels and the tile width is 4 pixels. The pixels on
the top floor are convoluted results of the coefficients of the
filter kernel and the three pixels around the co-located position
on the bottom floor. Three-directional arrows are utilized to
indicate one convolution. We assume N is the number of
floors in the pyramid, the length Lj on the jth floor is the
expected output size plus the overlapping regions P in gray.
If the rightmost m pixels of filtering results of this tile are
kept and reused for the next tile, R pixels in backslash can be
propagated to the top floor directly without convolution again.

Fig. 9 shows the computational order of the 1-D pyramid
architecture after applying the IRR data flow. The computation
of adjacent filtering results can be eliminated after the leftmost
tiles. Exact s pixels of the tile on each floor are calculated
so that input pixel throughput is the same as output pixel
throughput, and the hardware utilization of the filter core is
100% for all the non-leftmost tiles.

The IRR can be extended to the 2-D pyramid architecture
(Fig. 10). If the expected image size is W × H pixels, the
input image resolution must be (W + 3m) × (H + 3n) pixels.
The leftmost tiles and topmost tiles become larger than s × t

from the ground floor to the upmost floor. Other tiles retain
the size of s × t pixels, which is independent of the number
of floors

Lj = s + P (5a)

CHAO AND CHEN: PYRAMID ARCHITECTURE FOR 3840 X 2160 QUAD FULL HIGH DEFINITION 30 FRAMES/S VIDEO ACQUISITION 1503

Fig. 6. Co-located tiles of the pyramid of various floors.

Fig. 7. (a) Overlapped regions between horizontal neighbor tiles. (b) Over-
lapped regions between vertical neighbor tiles.

Fig. 8. IRR of the 1-D pyramid.

Fig. 9. Computation order of the 1-D pyramid architecture.

P = (N − j)m (5b)

R = (N − 1)m. (5c)

D. System Architecture

Fig. 11 shows a system block diagram with the pyramid tile-
based image processor (PTISP). The sensor interface obtains
pixels from the image sensor and continuously feeds them
into the external memory via the memory controller. The
required external memory size is one source image frame
and (3 × n) lines of pixels for the IRR. Once one row of

Fig. 10. Computation order of the 2-D pyramid architecture. (a) Topmost
row of tiles. (b) Other rows of tiles.

Fig. 11. Block diagram of the video-acquisition system and pyramid tile-
based image signal processor.

tiles in an image is ready in the external memory, the PTISP
loads these tiles for image processing one by one. Inside
the PTISP, the PPEs handle the pixel-based image processing
algorithms and the TPEs handle the block-based image pro-
cessing algorithms. The sequencer pre-fetches source image
pixels or the immediate filtering results of lower tiles from
the external memory and feeds data to tile elements. If
the 16 × 16 tile size is chosen, the output tile can be fed
into a typical video encoder for video compression without
any frame reorder buffer. Restated, the proposed architecture
converts raster-scan pixels into block-scan pixels. This is ef-
ficient for typical video codec architectures. Furthermore, one
32-bit advanced high-performance bus (AHB) slave interface
is employed for memory-mapped register settings and one
32-bit AHB master interface with embedded control logics is
utilized for data transfer. After initial settings, the AHB master
can generate memory addresses automatically for reading and
writing without the host processor. Finally, a 7×5 pixel kernel
size is chosen for the NR, CI, and EE filters, and the output
tile size is 16 × 16.

E. Tile Processing Element

Fig. 12 shows the proposed architecture for tile filtering with
the IRR data flow. Initially, pixels in the filter window must be
loaded into the window registers before the filter core performs
logic operations. If the filter window moves continuously,
most registers can be reused; otherwise, all registers must be

1504 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

reloaded and the filter core should wait until the data are ready.
As the image is divided into tiles, many break points exists
during the filter window moving according to the typical line
scan. When the direction breaks frequently, pixel registers to
filter cores are reloaded frequently. This results in the poor
hardware utilization. Therefore, this paper uses a novel vertical
snack scan (VSS) for continuous filtering. Fig. 13 shows the
directions and break points in different schemes. The frame
line scan will encounter H break points. A similar line scan
after tile partition will be H × (W/s) times, resulting in poor
data reuse and hardware utilization. Via the proposed VSS,
the number of break points is reduced to H/t times.

The address generator (AG) controls the memory access
and TPE data flow. The addressing is in circular order, such
that the overlapping pixels of neighbor tiles can be reused.
The tile element has two phases. One is the loading phase
of the next tile, and the other phase is the filtering phase
of this tile. Except for the leftmost tiles of rows, these two
phases function concurrently and are pipelined in one tile
unit. During the loading phase, pixels come from the source
raw pixels, immediate results loaded by the sequencer, and
outputs of the PPE on the same floor. The AG places incoming
pixels with control signals, including vertical synchronization,
horizontal synchronization, start of tile, and pixel validity,
to the corresponding position of the tile buffers. During the
filtering phase, the AG generates addresses for the tile buffers
to output pixels to the active registers and shadow registers,
and outputs control signals to the other TPE or PPE on the top
floor. Notably, (t + 2) two-port register file SRAMs are used to
store tile pixels. Fig. 14 shows the memory organization and
access. Every 8 pixel columns are grouped as one strip. Inside
one strip, eight SRAMs store one pixel column individually.
For the leftmost tile of one tile row, the tile pixels are loaded
into the entire tile buffer and then read out for filtering
without a tile pipeline to save the buffer size. For other
tiles, the reading and writing of strips occur concurrently. In
this design, (16 + 3 ∗ 4) ∗ 5 words are sufficient, such that
the overlapping regions will not be overwritten by the next
neighbor tile. The array of active registers is utilized as an
input window for the filter core. The array of shadow registers
is employed for seamless window movement during transition
from one column to another column. Within the active and
shadow arrays, pixels are displaced in three directions: upward,
downward, and leftward. For even columns (0, 2, 4, and so on)
in one tile, the active and shadow arrays are simultaneously
shifted one position up every cycle. For odd columns (1, 3,
4, and so on) in one tile, the active and shadow arrays are
simultaneously shifted one position down each cycle. Once the
arrays reach the top of the even columns or the bottom of odd
columns, the active and shadow arrays simultaneously shifted
one position left. In addition, the start position of next odd or
even column is t+1 pixels against the topmost or bottommost
position, respectively.

Fig. 15 shows an example of this VSS. For simplicity, 6×6
tile size and 3 × 3 filter kernel size are chosen. The solid
rectangles indicate pixels stored in the active array and dotted-
line rectangles indicate pixels stored in the shadow array. At a
given clock cycle, say, c = 0, the active array moves downward

Fig. 12. TPE. Considering filter kernel size is 7 × 5 and tile size is 16 × 16.

Fig. 13. (a) Frame line scan. (b) Line scan with tile partitions. (c) VSS with
tile partitions.

[Fig. 15(a)]. At c = 6, the active array reaches the bottom,
and at c = 7, the registers in the shadow array shift to the left
such that the active array contains pixels ready for the filter
core. Five pixels are fed into the filter core from the 4-pixel
distance from the bottom of each new odd column and 4-
pixel distance from the top of each new even column. Using
this flow, active registers are ready for filter cores each cycle
such that the hardware utilization is 100%. Various filter cores
have been designed for the NR, CI, and EE. These cores
are dedicatedly pipelined in several stages to achieve a high
frequency and throughput is 1 pixel/cycle.

F. Pixel Processing Element

The PPE performs per-pixel operations. Fig. 16 shows a
generic architecture. Different filter cores are implemented
for black level adjustment, lens shading compensation, white
balance, color correction, gamma correction, and color conver-
sion. These elements are designed in a pixel pipeline fashion.
Throughput is 1 pixel/cycle.

IV. Implementation and Comparisons

In this section, the proposed architecture is implemented and
compared with the frame line-based image signal processor
(FLISP). The same algorithms and three links of 2-D filters
with 7 × 5 filter kernel size are chosen to achieve the same
quality and performance. Therefore, 12 frame line buffers exist
in this FLISP.

CHAO AND CHEN: PYRAMID ARCHITECTURE FOR 3840 X 2160 QUAD FULL HIGH DEFINITION 30 FRAMES/S VIDEO ACQUISITION 1505

Fig. 14. Memory organization and access of tile buffers. (a) Load first tile.
(b) Read first tile for processing. (c) Load second tile. (d) Load third tile and
read second tile for processing. (e) Load fourth tile and read third tile for
processing.

Fig. 15. Data flow of the TPE.

Fig. 16. Pixel processing element.

A. Hardware Utilization

Table III shows the hardware core utilization for various
regions in a frame. Table IV shows the processing cycles and
utilization of all tiles in an image. Utilization is the number
of cycles of output pixels divided by the number of cycles of
input pixels and the input pixel throughput is 1 pixel/cycle. Via
the proposed VSS of the filter core, the drawbacks associated
with tile partitions are eliminated and hardware utilization
remains high.

TABLE III

Utilizations of Regions in the Pyramid Architecture

Output Pixels/Input Pixels
Region 1 (s*t)/[(s+3m)*(t+3n)]
Region 2 (s*t)/[s*(t+3n)]
Region 3 (s*t)/[(s+3m)*t]
Region 4 (s*t)/(s*t)

TABLE IV

Average Utilizations for Various Resolutions

QFHD FHD HD VGA
Width 3840 1920 1280 640
Height 2160 1080 720 480
No. of tiles in Region 1 1 1 1 1
No. of tiles in Region 2 239 119 79 39
No. of tiles in Region 3 134 67 44 29
No. of tiles in Region 4 31 787 7795 3397 1092
Average utilization 98.67% 97.35% 96.03% 93.58%

Fig. 17. Area, power dissipation, and bandwidth of the FLISP and PTISP
based on the UMC 90 nm CMOS SP-RVT process.

B. Memory Bandwidth

By considering a general camcorder application [1], [3], a
video encoder will be cascaded after the image pipeline and
one or several DRAMs are used as frame buffers. This scenario
is adopted to compare the PTISP and FLISP architectures
for QFHD videos running at 30 frames/s. Table V shows
the system bandwidth of the PTISP to the external memory;
Table VI depicts that of the FLISP. For video coding standards
such as H.264 [20], input data must be ordered in 16×16 pixel
blocks. The FLISP architecture should have an explicit reorder
procedure from the raster scan to the block scan. Thus, the
FLISP needs two frames of memory access between the image
pipeline and video encoder. However, the proposed PTISP
internally do the raster to block scan if the 16 × 16 pixel tile
is selected. Therefore, the FLISP retains the same bandwidth
requirement while the chrominance resolution grows. In the
case of YUV4:2:0 and YUV4:2:2, the bandwidth of the PTISP
is more than those of FLISP. For the high quality YUV4:4:4
format, the proposed PTISP is less than FLISP.

The vertical access is inefficient to DRAM memory; the
sequencer of the PTISP packs three TPE vertical reuse data
into a burst write and read of continuous addresses for each
tile. Thus, the PTISP has additional 2 × (W/16) × (H/16)
times of transactions for the vertical data reuse per frame for
all cases. It increases 12.5% transactions for a pyramid tile-
partitioned frame compared to a block-partitioned frame.

1506 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

TABLE V

Bandwidth of the PTISP for QFHD Videos at 30 Frames/s

Type Direction Data Format Bits/Frame Bandwidth (Mbits/s)
Input source image SENOR to EXT. MEM 10 bit Bayer raw (W+3 m)*(H+3n)*10 bits 2520
Input source image EXT. MEM to PTISP SEQ 10 bit Bayer raw (W+3 m)*(H+3n)*10 bits 2520
IRR of TPE 1 PTISP SEQ to EXT.MEM 10 bit lens compensated pixels (f2) (W+3 m)*(H/t)*n*10 bits 625
IRR of TPE 1 EXT. MEM to PTISP SEQ 10 bit lens compensated pixels (f2) (W+3 m)*(H/t)*n*10 bits 625
IRR of TPE 2 PTISP SEQ to EXT.MEM 8 bit gamma corrected pixels (f5) (W+2 m)*(H/t)*n*8 bits 500
IRR of TPE 2 EXT. MEM to PTISP SEQ 8 bit gamma corrected pixels (f5) (W+2 m)*(H/t)*n*8 bits 500
IRR of TPE 3 PTISP SEQ to EXT.MEM 8 bit Luma pixels (f7) (W+m)*(H/t)*n*8 bits 499
IRR of TPE 3 EXT. MEM to PTISP SEQ 8 bit Luma pixels (f7) (W+m)*(H/t)*n*8 bits 499
Total 8286

TABLE VI

Bandwidth of the FLISP for QFHD Videos at 30 Frames/s

Type Direction Data Format Bits/Frame Bandwidth (Mbits/s)
Raster scan FLISP to EXT.MEM 8 bit YUV4:2:0 W*H*8 bits*1.5 2986
Block scan EXT.MEM to CODEC 8 bit YUV4:2:0 W*H*8 bits*1.5 2986
Total for YUV4:2:0 5972
Raster scan FLISP to EXT.MEM 8 bit YUV4:2:2 W*H*8 bits*2 3982
Block scan EXT.MEM to CODEC 8 bit YUV4:2:2 W*H*8 bits*2 3982
Total for YUV4:2:2 7963
Raster scan FLISP to EXT.MEM 8 bit YUV4:4:4 W*H*8 bits*3 5972
Block scan EXT.MEM to CODEC 8 bit YUV4:4:4 W*H*8 bits*3 5972
Total for YUV4:4:4 11 944

Fig. 18. Memory requirements of the FLISP and PTISP at various resolu-
tions and filter sizes.

Fig. 19. Chip layout of the PTISP.

TABLE VII

Chip Specifications

Maximum computation performance 3840×2160 at 30 frames/s
Maximum output data rate 746 M pixels/s
Maximum video-processing capability 3840×2160 (4:4:4) 30frames/s
Hardware utilization 98.67%
Technology UMC 90 nm SP-RVT
Logic gate (2-input NAND and included SRAM) 309 K
SRAM bits 37.31 K
Working frequency 266 MHz
Power consumption 108 mW at 266 MHz
Core size 1.54 mm2

Die area 4.50 mm2

C. Area and Power Efficiency

Fig. 17 shows the equivalent gate count, power consump-
tion, and global bandwidth requirement between the PTISP
and FLISP. In the FLISP architecture, SRAMs dominate the
whole area of the design. Moreover, the percentage occupied
increases as image width increases. Conversely, the SRAM
requirement of the PTISP is fixed with little overhead for
logic control circuits. The comparison is shown in Fig. 18.
Furthermore, the SRAM area is independent of image width,
such that the area and power efficiency are much better than
those of the FLISP architecture as image resolution increases.

D. Very Large-Scale Integration Implementation and Compar-
ison

Table VII shows the chip specifications, while Fig. 19 shows
chip layout. The core/die size is 4.5 mm2/1.54 mm2 with the
UMC 90 nm CMOS SP-RVT process. Power consumption
is 108 mW at 1.0-V and 266 MHz. This chip can process
1920 × 1080 videos at 120 frames/s or 3840 × 2160 videos
at 30 frames/s for high-definition video-acquisition devices.

CHAO AND CHEN: PYRAMID ARCHITECTURE FOR 3840 X 2160 QUAD FULL HIGH DEFINITION 30 FRAMES/S VIDEO ACQUISITION 1507

TABLE VIII

Implementation Comparisons with Application-Specific Integrated Circuit Solutions

Loinaz et al. [13] Doswald et al. [14] Chen and Chien [18] PTISP
Video resolution 352 × 288 1024 × 1024 1920 × 1080 3840 × 2160
2-D filter size 3 × 3 9 × 9 3 × 3 7 × 5
No. of 2-D filtering 1 (CI) 1 (CI) 1 (NR, CI, or EE) 3 (NR, CI, and EE)
Input data rate 3 MB/s 50 MB/s 115 MB/s 240 MB/s
Output data rate 9 MB/s 120 MB/s 345 MB/s 746 MB/s
Technology 0.8 µm 0.35 µm 0.18 µm 90 nm

Die size 37 mm2 49 mm2 7.72 mm2 4.50 mm2

Core size − − 5 mm2 1.54 mm2

Power dissipation 92 mW at 3.3-V 278 mW at 2.5-V 218 mW at 1.8-V 108 mW at 1.0-V

Table VIII shows chip comparisons. Loinaz et al. [13]
integrated the image sensor and processing pipeline. Notably,
NR and EE were not supported and filter kernel size was small.
Doswald et al.’s [14] is a pure image signal processor for the
image sensor. Larger kernel size is supported. However, NR
and EE were not supported. Chen and Chien [18] supported
NR, CI, or EE, but they work at different time frames, and filter
kernel was small. The proposed design provides the highest
pixel throughput while filter kernel size is kept large and three
links of 2-D filtering works concurrently.

V. Conclusion

This paper presented a novel pyramid structure with IRR
and VSS computing schemes for the CCD/CMOS image
processing pipeline. The proposal can be applied in a system
including image sensor, image processing pipeline, and an
image/video encoder, such as digital camera, digital cam-
corder, or IP security camera. This architecture is scalable
and independent of image resolution. To demonstrate its
performance, an image processor for 3840×2160 QFHD at
30 frames/s videos was designed in the UMC 90 nm CMOS
SP-RVT technology. Compared with traditional architectures
with frame line buffers, the proposed design reduced the power
consumption by 25% to 108 mW from 145 mW. Chip area is
reduced by 65% to 309 K from 888 K logic gates. The external
memory bandwidth increases to 8286 Mbit/s from 5972 Mbit/s
for YUV4:2:0, from 7963 Mbit/s for YUV4:2:2, and is reduced
by 30% from 11 944 Mbit/s for YUV4:4:4.

References

[1] T. Nakamm, H. Marumori, M. Takahh, and Y. Fujii, “An MPEG-2
CODEC LSI with an audio accelerator for camcorders,” IEEE Trans.
Consum. Electron., vol. 48, no. 3, pp. 326–327, Aug. 2002.

[2] M. Kuwahara and K. Yoneyama, “A portable camcorder/server for
wireless video transmission,” IEEE Trans. Consum. Electron., vol. 51,
no. 2, pp. 351–355, May 2005.

[3] Y. Hamamoto, K. Koyama, S. Okada, H. Murata, M. Nishikawa, and
N. Itii, “Compact full HD digital movie camera with H.264 codec in
single-chip,” in Proc. IEEE Int. Symp. Consum. Electron., Apr. 2008,
pp. 1–3.

[4] G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans.
Image Process., vol. 6, no. 7, pp. 901–932, Jul. 1997.

[5] J. Adams, K. Parulski, and K. Spaulding, “Color processing in digital
cameras,” IEEE Micro, vol. 18, no. 6, pp. 20–30, Nov. 1998.

[6] R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image
processing pipeline,” IEEE Signal Process. Mag., vol. 25, no. 1, pp.
34–43, Jan. 2005.

[7] W. C. Kao, S. H. Wang, L. Y. Chen, and S. Y. Lin, “Design consid-
erations of color image processing pipeline for digital cameras,” IEEE
Trans. Consum. Electron., vol. 52, no. 4, pp. 1144–1152, Nov. 2006.

[8] J. Zhou and J. Glotzbach, “Image pipeline tuning for digital cameras,”
in Proc. IEEE Int. Symp. Consum. Electron., Jun. 2007, pp. 1–4.

[9] L. Lucas, “High speed low cost TM1300 Trimedia enhanced PCI
VLIW mediaprocessor,” in Proc. Hot Chips, vol. 11. Aug. 1999,
pp. 111–120.

[10] S. Agarwala, P. Koeppen, T. Anderson, A. Hill, M. Ales, R. Damodaran,
L. Nardini, P. Wiley, S. Mullinnix, J. Leach, A. Lell, M. Gill, J. Golston,
D. Hoyle, A. Rajagopal, A. Chachad, M. Agarwala, R. Castille, N.
Common, J. Apostol, H. Mahmood, M. Krishnan, B. Duc, A. Quang-
Dieu, P. Groves, L. Nguyen, N. S. Nagaraj, and R. Simar, “A 600 MHz
VLIW DSP,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1532–
1544, Nov. 2002.

[11] S. Arakawa, Y. Yamaguchi, S. Akui, Y. Fukuda, H. Sumi, H. Hayashi,
M. Igarashi, K. Ito, H. Nagano, M. Imai, and N. Asari, “A 512GOPS
fully-programmable digital image processor with full HD 1080p process-
ing capabilities,” in Proc. Dig. Tech. Papers IEEE ISSCC, Feb. 2008,
pp. 312–313.

[12] T. Wada, S. Ishiwata, K. Kimura, K. Nakanishi, M. Sumiyoshi,
T. Miyamori, and M. Nakagawa, “A VLIW vector media coprocessor
with cascaded SIMD ALUs,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 17, no. 9, pp. 1285–1296, Sep. 2009.

[13] M. Loinaz, K. Singh, A. Blanksby, D. Inglis, K. Azadet, and B. Ackland,
“A 200 mW 3.3-V CMOS color camera IC producing 352 × 288 24b
video at 30 frames/s,” in Proc. Dig. Tech. Papers IEEE ISSCC, Feb.
1998, pp. 168–169.

[14] D. Doswald, B. Schreier, S. Oetiker, J. Hafliger, P. Blessing, N. Felber,
and W. Fichtner, “A 30 frames/s megapixel real-time CMOS image
processor,” in Proc. Dig. Tech. Papers IEEE ISSCC, Feb. 2000, pp.
232–233.

[15] C. Weerasinghe, W. Li, I. Kharitonenko, M. Nilsson, and S. Twelves,
“Novel color processing architecture for digital cameras with CMOS
image sensors,” IEEE Trans. Consum. Electron., vol. 51, no. 4, pp.
1092–1099, Nov. 2005.

[16] S. C. Hsia, M. H. Chen, and P. S. Tsai, “VLSI implementation of low-
power high-quality color interpolation processor for CCD camera,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 14, no. 4, pp. 361–369, Apr.
2006.

[17] A. Gentile, S. Vitabile, L. Verdoscia, and F. Sorbello, “Image processing
chain for digital still cameras based on the SIMPil architecture,” in Proc.
Int. Conf. Workshops Parallel Process., Jun. 2005, pp. 215–222.

[18] J. C. Chen and S. Y. Chien, “CRISP: Coarse-grained reconfigurable
image stream processor for digital still cameras and camcorders,” IEEE
Trans. Circuits Syst. Video Technol., vol. 18, no. 9, pp. 1223–1236, Sep.
2008.

[19] ISO/IEC 10918-1:1994, “Information technology: Digital compression
and coding of continuous-tone still images—requirements and guide-
lines.”

[20] T. Wiegand, G. J. Sullivan, G. Gjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[21] G. Cortellazzo, G. A. Mian, and R. Parolari, “Statistical characteristics
of granular camera noise,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, no. 6, pp. 536–543, Dec. 1994.

[22] R. Garnett, T. Huegerich, C. Chui, and H. Wenjie, “A universal noise re-
moval algorithm with an impulse detector,” IEEE Trans. Image Process.,
vol. 14, no. 11, pp. 1747–1754, Nov. 2005.

1508 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 11, NOVEMBER 2010

[23] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE Int. Conf. Comput. Vision, Jan. 1998,
pp. 839–846.

[24] D. Barash, “A fundamental relationship between bilateral filtering,
adaptive smoothing and the nonlinear diffusion equation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 6, pp. 844–847, Jun.
2002.

[25] B. Bayer, “Color imaging array,” U.S. Patent 3 971 065, 1976.
[26] X. Li, B. K. Gunturk, and L. Zhang, “Image demosaicing: A systematic

survey,” in Proc. IST/SPIE Conf. Vis. Commun. Image Process., vol.
6822. Jan. 2008, pp. 68221J–68221J-15.

[27] W. Lu and Y. Tan, “Color filter array demosaicing: New method and
performance measures,” IEEE Trans. Image Process., vol. 12. no. 10,
pp. 1194–1210, Oct. 2003.

[28] E. Chang, S. Cheung, and D. Y. Pan., “Color filter array recovery using a
threshold-based variable number of gradients,” in Proc. SPIE, vol. 3650.
1999, pp. 36–43.

[29] Unsharp Masking. (2009, Apr.) [Online]. Available: http://
en.wikipedia.org/wiki/Unsharp−masking.html

Wei-Min Chao was born in Taoyuan, Taiwan,
in 1977. He received the B.S. and M.S. degrees
from the Department of Electronics Engineering,
National Taiwan University, Taipei, Taiwan, in 2000
and 2002, respectively. He is currently pursuing
the Ph.D. degree from the Graduate Institute of
Electrical Engineering, National Taiwan University.

He was with the Center System-on-Chip Labora-
tory, Quanta Computer, Inc., Taoyuan, as a Deputy
Section Manager from 2002 to 2004, a Section
Manager from 2004 to 2007, a Senior Manager from

2008 to 2009, and has been an Associate Director since 2009. His current
research interests include video coding algorithms and systems, digital signal
processing architecture, very large-scale integration architecture, and system-
on-chip design flows.

Mr. Chao received several awards from University/College IC Design
Contest, Taiwan, in 2000, the Golden Silicon Award (Macronix) in 2000,
the Advanced Chip Award of NSC Chip Implementation Center in 2000,
the IC Contest Award in 2001, the IP Contest Award, Taiwan, in 2001, the
Golden Silicon Award (Macronix) in 2001, the Master Paper Award of the
National Science Council, Taiwan, in 2002, the Long-Term (Acer) Paper
Award in 2002, the Young Paper Award of the Chinese Institute of Electrical
Engineering in 2002, the Electric Innovation Contest of NTU in 2002, the
Advanced Chip Award of NSC Chip Implementation Center in 2003, and
the Technology Transfer Outstanding Contribution Award, National Science
Council, Taiwan, in 2004.

Liang-Gee Chen (S’84–M’86–SM’94–F’01) was
born in Yun-Lin, Taiwan, in 1956. He received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from National Cheng Kung University, Tainan,
Taiwan, in 1979, 1981, and 1986, respectively.

He was an Instructor from 1981 to 1986, and
an Associate Professor from 1986 to 1988 with
the Department of Electrical Engineering, National
Cheng Kung University. While being in military
service from 1987 to 1988, he was an Associate Pro-
fessor with the Institute of Resource Management,

Defense Management College, Taiwan. In 1988, he joined the Department
of Electrical Engineering, National Taiwan University, Taipei, Taiwan. From
1993 to 1994, he was a Visiting Consultant with the Digital Signal Processing
Research Department, AT&T Bell Laboratory, Murray Hill, NJ. In 1997,
he was a Visiting Scholar with the Department of Electrical Engineering,
University of Washington, Seattle. Currently, he is a Professor with National
Taiwan University. Since 2004, he is the Executive Vice President and the
General Director of Electronics Research and Service Organization, Industrial
Technology Research Institute, Hsinchu, Taiwan. His current research interests
include digital signal processing architecture design, video processor design,
and video coding system.

Dr. Chen was the General Chairman of the 7th VLSI Computer-Aided De-
sign Symposium. He was the General Chairman of the 1999 IEEE Workshop
on Signal Processing Systems: Design and Implementation. He served as an
Associate Editor of the IEEE Transactions on Circuits and Systems

for Video Technology from 1996 to 2008, and has been an Associate
Editor of the IEEE Transactions on Very Large-Scale Integration

Systems since 1999. He is an Associate Editor of the IEEE Transactions

on Circuits and Systems II: Express Briefs and an Associate Editor of
Proceedings of the IEEE since 2002. He has been an Associate Editor of
the Journal of Circuits, Systems, and Signal Processing since 1999. He served
as a Guest Editor of the Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology in 2001. He received the Best Paper Award from
the ROC Computer Society in 1990 and 1994. From 1991 to 1999, he received
Long-Term (Acer) Paper Awards annually. In 1992, he received the Best Paper
Award of the 1992 Asia-Pacific Conference on Circuits and Systems in VLSI
Design Track. In 1993, he received the Annual Paper Award of the Chinese
Engineer Society. In 1996, he received the Outstanding Research Award from
NSC, and the Dragon Excellence Award for Acer. He was elected the IEEE
Circuits and Systems Distinguished Lecturer from 2001 to 2002. He is a
member of the honor society Phi Tan Phi.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

